Lecture 9: PGM — Learning

Qinfeng (Javen) Shi

13 Oct 2014

Intro. to Stats. Machine Learning COMP SCI 4401/7401

Table of Contents I

- Learning parameters in MRFs
 - Max Margin Approaches
 - Probabilistic Approaches

Inference and Learning

Given parameters (of potentials) and the graph, one can ask for:

•
$$\mathbf{x}^* = \operatorname{argmax}_{\mathbf{x}} P(\mathbf{x})$$
 MAP Inference

•
$$P(\mathbf{x}_c) = \sum_{\mathbf{x}_{V/c}} P(\mathbf{x})$$
 Marginal Inference

How to get parameters and the graph? \rightarrow Learning.

Learning

- Learn parameters if graph given (Lecture 9)
 - Bayes Net (Directed graphical models)
 - Markov Random Fields (Undirected or factor graphical models)
- Structure estimation (to learn or estimate the graph structure, Lecture 10)

Parameters for bayesian networks

For bayesian networks, $P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i|Pa(x_i))$. Parameters: $P(x_i|Pa(x_i))$.

Learning parameters in Bayes Net

$$Y = Yes. N = No.$$

:

$$P(D=d) = \frac{N_{D=d}}{N_{total}}$$

$$P(G=g|D=d, I=i) = \frac{N_{G=g, D=d, I=i}}{N_{D=d, I=i}}$$

Learning parameters in Bayes Net

Problems?

Learning parameters in Bayes Net

Problems?

- not minimise classification error.
- not much flexibility on the features nor the parameters.

Parameters for MRFs

For MRFs, let V be the set of nodes, and C be the set of clusters c.

$$P(\mathbf{x};\theta) = \frac{\exp(\sum_{c \in \mathcal{C}} \theta_c(\mathbf{x}_c))}{Z(\theta)},$$
 (1)

where normaliser $Z(\theta) = \sum_{\mathbf{x}} \exp\{\sum_{c'' \in \mathcal{C}} \theta_{c''}(\mathbf{x}_{c''})\}$. Parameters: $\{\theta_c\}_{c \in \mathcal{C}}$. Inference:

- MAP inference $\mathbf{x}^* = \operatorname{argmax}_{\mathbf{x}} \sum_{c \in \mathcal{C}} \theta_c(\mathbf{x}_c)$ $\log P(\mathbf{x}) \propto \sum_{c \in \mathcal{C}} \theta_c(\mathbf{x}_c)$
- Marginal inference $P(\mathbf{x}_c) = \sum_{\mathbf{x}_{V/c}} P(\mathbf{x})$

Learning (parameter estimation): learn θ and the graph structure.

- Often assume $\theta_c(\mathbf{x}_c) = \langle \mathbf{w}, \Phi_c(\mathbf{x}_c) \rangle$.
- w ← empirical risk minimisation (ERM).

Parameters for MRFs

In learning, we look for a F that predicts labels well via

$$\mathbf{y}^* = \max_{\mathbf{y} \in \mathcal{Y}} F(\mathbf{x}_i, \mathbf{y}; \mathbf{w}).$$

Given graph G = (V, E), one often assume

$$\begin{split} F(\mathbf{x}, \mathbf{y}; \mathbf{w}) &= \langle \mathbf{w}, \Phi(\mathbf{x}, \mathbf{y}) \rangle \\ &= \sum_{i \in V} \left\langle \mathbf{w}_1, \Phi_i(y^{(i)}, \mathbf{x}) \right\rangle + \sum_{(i,j) \in E} \left\langle \mathbf{w}_2, \Phi_{i,j}(y^{(i)}, y^{(j)}, \mathbf{x}) \right\rangle \\ &= \sum_{i \in V} \theta_i(y^{(i)}, \mathbf{x}) + \sum_{(i,j) \in E} \theta_{i,j}(y^{(i)}, y^{(j)}, \mathbf{x}) \quad (\mathsf{MAP inference}) \end{split}$$

Here
$$\mathbf{w} = [\mathbf{w}_1; \mathbf{w}_2]$$
, and $\Phi(\mathbf{x}, \mathbf{y}) = [\sum_{i \in V} \Phi_i(y^{(i)}, \mathbf{x}); \sum_{(i,i) \in E} \Phi_{i,j}(y^{(i)}, y^{(j)}, \mathbf{x})]$.

Max Margin Approaches

A gap between $F(\mathbf{x}_i, \mathbf{y}_i; \mathbf{w})$ and best $F(\mathbf{x}_i, \mathbf{y}; \mathbf{w})$ for $\mathbf{y} \neq \mathbf{y}_i$, that is $F(\mathbf{x}_i, \mathbf{y}_i; \mathbf{w}) - \max_{\mathbf{y} \in \mathcal{Y}, \mathbf{y} \neq \mathbf{y}_i} F(\mathbf{x}_i, \mathbf{y}; \mathbf{w})$

Structured SVM - 1

Primal:

$$\min_{\mathbf{w},\xi} \ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \xi_i \quad \text{s.t.}$$
 (2a)

$$\forall i, \mathbf{y} \neq \mathbf{y}_i, \langle \mathbf{w}, \Phi(\mathbf{x}_i, \mathbf{y}_i) - \Phi(\mathbf{x}_i, \mathbf{y}) \rangle \ge \Delta(\mathbf{y}_i, \mathbf{y}) - \xi_i.$$
 (2b)

Dual is a quadratic programming (QP) problem:

$$\max_{\alpha} \sum_{i,\mathbf{y}\neq\mathbf{y}_{i}} \Delta(\mathbf{y}_{i},\mathbf{y}) \alpha_{i}\mathbf{y} - \frac{1}{2} \sum_{i,j,\mathbf{y}\neq\mathbf{y}_{i},\mathbf{y}'\neq\mathbf{y}_{j}} \alpha_{i}\mathbf{y} \alpha_{j}\mathbf{y}' \left\langle \Phi(\mathbf{x}_{i},\mathbf{y}), \Phi(\mathbf{x}_{j},\mathbf{y}') \right\rangle$$

$$\forall i, \mathbf{y} \neq \mathbf{y}_{i}, \ \alpha_{i}\mathbf{y} \geq 0,$$

$$\forall i, \ \sum_{\mathbf{y}\neq\mathbf{y}_{i}} \alpha_{i}\mathbf{y} \leq C.$$
(3)

Structured SVM - 2

Cutting plane method needs to find the label for the most violated constraint in (2b)

$$\mathbf{y}_{i}^{\dagger} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}} \Delta(\mathbf{y}_{i}, \mathbf{y}) + \langle \mathbf{w}, \Phi(\mathbf{x}_{i}, \mathbf{y}) \rangle. \tag{4}$$

With \mathbf{y}_{i}^{\dagger} , one can solve following relaxed problem (with much fewer constraints)

$$\min_{\mathbf{w},\xi} \ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \xi_i \quad \text{s.t.}$$
 (5a)

$$\forall i, \left\langle \mathbf{w}, \Phi(\mathbf{x}_i, \mathbf{y}_i) - \Phi(\mathbf{x}_i, \mathbf{y}_i^{\dagger}) \right\rangle \ge \Delta(\mathbf{y}_i, \mathbf{y}_i^{\dagger}) - \xi_i.$$
 (5b)

Structured SVM - 3

Simplified over all procedure.

```
Input: data x_i, labels y_i, sample size m, number of iterations T
Initialise S_0 = \emptyset, \mathbf{w}_0 = 0 (or a random vector), and t = 0.
for t = 0 to T do
     for i = 1 to m do
          \mathbf{y}_{i}^{\dagger} = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}, \mathbf{v} \neq \mathbf{y}_{i}} \langle \mathbf{w}_{t}, \Phi(\mathbf{x}_{i}, \mathbf{y}) \rangle + \Delta(\mathbf{y}_{i}, \mathbf{y}),
         \boldsymbol{\xi_i} = \left[ \Delta(\mathbf{y}_i, \mathbf{y}) + \left\langle \mathbf{w}_t, \Phi(\mathbf{x}_i, \mathbf{y}_i^{\dagger}) - \Phi(\mathbf{x}_i, \mathbf{y}_i) \right\rangle \right]_{\perp},
          if \xi_i > 0 then
               Increase constraint set S_t \leftarrow S_t \cup \{\mathbf{y}_i^{\dagger}\}
          end if
     end for
    \mathbf{w}_t = \sum_i \sum_{\mathbf{v} \in S_t} \alpha_{i \mathbf{y}} \Phi(\mathbf{x}_i, \mathbf{y})
    \alpha \leftarrow optimise dual QP with constraint set S_t.
end for
```

Other Max Margin Approaches

Other approaches using Max Margin principle such as Max Margin Markov Network (M3N), ...

Probabilistic Approaches

Main types:

- Maximum Entropy (MaxEnt)
- Maximum a Posteriori (MAP)
- Maximum Likelihood (ML)

Maximum Entropy

Maximum Entropy (ME) estimates **w** by maximising the entropy. That is,

$$\mathbf{w}^* = \operatorname*{argmax}_{\mathbf{w}} \sum_{\mathbf{x} \in \mathcal{X}, \mathbf{y} \in \mathcal{Y}} - P_{\mathbf{w}}(\mathbf{x}, \mathbf{y}) \ln P_{\mathbf{w}}(\mathbf{x}, \mathbf{y}).$$

Duality between maximum likelihood, and maximum entropy, subject to moment matching constraints on the expectations of features.

MAP

Let likelihood function $\mathcal{L}(\mathbf{w})$ be the modelled probability or density for the occurrence of a sample configuration $(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_m, \mathbf{y}_m)$ given the probability density $\mathbf{P}_{\mathbf{w}}$ parameterised by \mathbf{w} . That is,

$$\mathcal{L}(\mathbf{w}) = \mathbf{P}_{\mathbf{w}} ((\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_m, \mathbf{y}_m)).$$

Maximum a Posteriori (MAP) estimates \mathbf{w} by maximising $\mathcal{L}(\mathbf{w})$ times a prior $P(\mathbf{w})$. That is

$$\mathbf{w}^* = \operatorname*{argmax}_{\mathbf{w}} \mathcal{L}(\mathbf{w}) P(\mathbf{w}). \tag{6}$$

Assuming $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{1 \le i \le m}$ are I.I.D. samples from $\mathbf{P}_{\mathbf{w}}(\mathbf{x}, \mathbf{y})$, (6) becomes

$$\begin{split} \mathbf{w}^* &= \underset{\mathbf{w}}{\operatorname{argmax}} \prod_{1 \leq i \leq m} \mathbf{P}_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_i) P(\mathbf{w}) \\ &= \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{1 \leq i \leq m} -\ln \mathbf{P}_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_i) - \ln P(\mathbf{w}). \end{split}$$

Maximum Likelihood

Maximum Likelihood (ML) is a special case of MAP when $P(\mathbf{w})$ is uniform which means

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmax}} \prod_{1 \le i \le m} \mathbf{P}_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_i)$$
$$= \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{1 \le i \le m} -\ln \mathbf{P}_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_i).$$

Alternatively, one can replace the joint distribution $P_w(x,y)$ by the conditional distribution $P_w(y \mid x)$ that gives a discriminative model called Conditional Random Fields (CRFs)

Conditional Random Fields (CRFs) - 1

Assume the conditional distribution over $\mathcal{Y} \mid \mathcal{X}$ has a form of exponential families, *i.e.*,

$$P(\mathbf{y} \mid \mathbf{x}; \mathbf{w}) = \frac{\exp(\langle \mathbf{w}, \Phi(\mathbf{x}, \mathbf{y}) \rangle)}{Z(\mathbf{w} \mid \mathbf{x})}, \tag{7}$$

where

$$Z(\mathbf{w} \mid \mathbf{x}) = \sum_{\mathbf{y}' \in \mathcal{Y}} \exp(\langle \mathbf{w}, \Phi(\mathbf{x}, \mathbf{y}') \rangle), \tag{8}$$

and

$$\Phi(\mathbf{x}, \mathbf{y}) = \left[\sum_{i \in V} \Phi_i(y^{(i)}, \mathbf{x}); \sum_{(i,j) \in E} \Phi_{i,j}(y^{(i)}, y^{(j)}, \mathbf{x})\right]$$

$$\mathbf{w} = \left[\mathbf{w}_1; \mathbf{w}_2\right].$$

More generally speaking, the global feature can be decomposed into local features on cliques (fully connected subgraphs).

CRFs - 2

Denote $(\mathbf{x}_1,\ldots,\mathbf{x}_m)$ as \mathbf{X} , $(\mathbf{y}_1,\ldots,\mathbf{y}_m)$ as \mathbf{Y} . The classical approach is to maximise the conditional likelihood of \mathbf{Y} on \mathbf{X} , incorporating a prior on the parameters. This is a Maximum a Posteriori (MAP) estimator, which consists of maximising

$$P(w | X, Y) \propto P(w) P(Y | X; w).$$

From the i.i.d. assumption we have

$$P(Y | X; w) = \prod_{i=1}^{m} P(y_i | x_i; w),$$

and we impose a Gaussian prior on w

$$P(\mathbf{w}) \propto \exp\left(rac{-||\mathbf{w}||^2}{2\sigma^2}
ight).$$

Maximising the posterior distribution can also be seen as minimising the negative log-posterior, which becomes our risk function $R(\mathbf{w} \mid \mathbf{X}, \mathbf{Y})$

$$R(\mathbf{w} \mid \mathbf{X}, \mathbf{Y}) = -\ln(P(\mathbf{w}) P(\mathbf{Y} \mid \mathbf{X}; \mathbf{w})) + c$$

$$= \frac{||\mathbf{w}||^2}{2\sigma^2} - \sum_{i=1}^{m} \underbrace{(\langle \Phi(\mathbf{x}_i, \mathbf{y}_i), \mathbf{w} \rangle) - \ln(Z(\mathbf{w} \mid \mathbf{x}_i))}_{:=\ell_L(\mathbf{x}_i, \mathbf{y}_i, \mathbf{w})} + c,$$

where c is a constant and ℓ_L denotes the log loss i.e. negative log-likelihood. Now learning is equivalent to

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} R(\mathbf{w} \mid \mathbf{X}, \mathbf{Y}).$$

Above is a convex optimisation problem on \mathbf{w} since $\ln Z(\mathbf{w} \mid \mathbf{x})$ is a convex function of \mathbf{w} . The solution can be obtained by gradient descent since $\ln Z(\mathbf{w} \mid \mathbf{x})$ is also differentiable. We have

$$\nabla_{\mathbf{w}} R(\mathbf{w} \mid \mathbf{X}, \mathbf{Y}) = -\sum_{i=1}^{m} (\Phi(\mathbf{x}_i, \mathbf{y}_i) - \nabla_{\mathbf{w}} \ln(Z(\mathbf{w} \mid \mathbf{x}_i)).$$

It follows from direct computation that

$$abla_{\mathbf{w}} \ln Z(\mathbf{w} \,|\, \mathbf{x}) = \mathbb{E}_{\mathbf{y} \sim \mathbf{P}(\mathbf{y} \,|\, \mathbf{x}; \mathbf{w})} [\Phi(\mathbf{x}, \mathbf{y})].$$

Since $\Phi(\mathbf{x}, \mathbf{y})$ are decomposed over nodes and edges, it is straightforward to show that the expectation also decomposes into expectations on nodes $\mathcal V$ and edges $\mathcal E$

$$\begin{split} & \mathbb{E}_{\mathbf{y} \sim \mathbf{P}(\mathbf{y} \mid \mathbf{x}; \mathbf{w})} [\Phi(\mathbf{x}, \mathbf{y})] = \\ & \sum_{i \in \mathcal{V}} \mathbb{E}_{y^{(i)} \sim \mathbf{P}(y^{(i)} \mid \mathbf{x}; \mathbf{w})} [\Phi_i(y^{(i)}, \mathbf{x})] \\ & + \sum_{(ij) \in \mathcal{E}} \mathbb{E}_{y^{(i)}, y^{(j)} \sim \mathbf{P}(y^{(i)}, y^{(j)} \mid \mathbf{x}; \mathbf{w})} [\Phi_{i,j}(y^{(i)}, y^{(j)}, \mathbf{x})], \end{split}$$

where the node and edge expectations can be computed given $\mathbf{P}(y^{(i)}|\mathbf{x};\mathbf{w})$ and $\mathbf{P}(y^{(i)},y^{(j)}|\mathbf{x};\mathbf{w})$, which can be computed exactly by variable elimination or junction tree or approximately using e.g. (loopy) belief propagation, or being circumvented through sampling.

That's all

Thanks!