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Inference and Learning

Given parameters (of potentials) and the graph, one can ask for:
e x* = argmax, P(x) MAP Inference
° P(x.) = ZXWC P(x) Marginal Inference

How to get parameters and the graph? — Learning.
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Learning

@ Learn parameters if graph given (Lecture 9)

o Bayes Net (Directed graphical models)
o Markov Random Fields (Undirected or factor graphical models)

@ Structure estimation ( to learn or estimate the graph
structure, Lecture 10)
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Parameters for bayesian networks

For bayesian networks, P(x1,...,xs) = [[/-; P(xi|Pa(xi)).
Parameters: P(x;|Pa(x;)).
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Learning parameters in Bayes Net

Y = Yes. N = No.

Case D I G S L H J
1 Y Y'Y Y Y NY
2 N NY N N Y N
3 Y NY N N Y N
Np—q4
P(D d) Ntotal
NG—g,D=d,i1=i

P(G=g|D=d,l=i)=

Np—g =i
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Learning parameters in Bayes Net

Problems?
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Learning parameters in Bayes Net

Problems?
@ not minimise classification error.

@ not much flexibility on the features nor the parameters.

Qinfeng (Javen) Shi Lecture 9: PGM — Learning



. . Max Margin Approaches
Learning parameters in MRFs Probabilistic Approaches

Parameters for MRFs

For MRFs, let 'V be the set of nodes, and € be the set of clusters c.

P(x;0) = exp(Zze((;)Gc(xc))’ (1)

where normaliser Z(0) = >, exp{>_ce Ocr (X))}
Parameters: {0} cce-

Inference:

o MAP inference x* = argmax, » e 0c(xc)
log P(x) o< D ce bc(xc)
e Marginal inference P(xc) = ZXWC P(x)

Learning (parameter estimation): learn 6 and the graph structure.
e Often assume 0.(xc) = (w, P(xc)).
@ w < empirical risk minimisation (ERM).
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Max Margin Approaches

Learning parameters in MRFs P A Eneies

Parameters for MRFs

In learning, we look for a F that predicts labels well via

* = max F(x;,y;w).
y yeyx('y )

Given graph G = (V, E), one often assume
F(x,y;w) = (w, ®(x,y))

- Z<w1,¢;(y('),X)> + ) <W2,¢i,j(y("),y(”,><)>

icv (ij)€E
=> 0D+ Y 00,y x) (MAP inference)
iev (ij)EE

Here w = [wy; wy], and ' '
O(x,y) = [Xicy iy, %) X jyee i (D, yU),x)].
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Max Margin Approaches

Learning parameters in MRFs BT g aEneies

Max Margin Approaches

A gap between F(x;,y;;w) and best F(x;,y;w) for y #y;, that is

F(xi,yiiw) — max F(x;,y;w)
yeY yAy;
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Max Margin Approaches

Learning parameters in MRFs BT g aEneies

Structured SVM - 1

Primal:

1 -
b cY ¢ st 2
min 5wl + ;5 s (2a)

Vi,y #yi, (w, ®(xi,y;) — (xi,y)) > Aly;,y) — & (2b)

Dual is a quadratic programming (QP) problem:

1
max Z Ay, y)aiy — 2 Z ajyajy (S(xi,y), P(x;,y))

L,Y#Y; i YZYiY #Y;
VI.7Y7£YI7 aiyzoa
Vi, Y aiy < C. (3)

Y#Yi
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Max Margin Approaches

Learning parameters in MRFs BT g aEneies

Structured SVM - 2

Cutting plane method needs to find the label for the most violated
constraint in (2b)

y:f = argn;ax A(y,—, y) + (w, ¢(x,~,y)> : (4)
ye

With y:.r, one can solve following relaxed problem (with much fewer
constraints)

I -
min 2 llwl|* + ng, s.t. (5a)
Viu <W) d)(xivyi) - ¢(xl7y;r)> Z A(YI’y,T) - éi' (5b)
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Max Margin Approaches

Learning parameters in MRFs BT g aEneies

Structured SVM - 3

Simplified over all procedure.

Input: data x;, labels y;, sample size m, number of iterations T
Initialise So = 0, wo = 0 (or a random vector), and t = 0.
fort=0to T do
for i=1to mdo
Y,T = argmaxycy y-4y. (we, ®(x;,y)) + Ay, y),
& = | B0 y) + (we, O(xi,v) = O(x1y)) |
if £ > 0 then
Increase constraint set Sy < S U {y,T}
end if
end for
W; = Zi Zyest aiyq>(x/7 y)
« < optimise dual QP with constraint set S;.
end for

9
Jr
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Max Margin Approaches

Learning parameters in MRFs BT g aEneies

Other Max Margin Approaches

Other approaches using Max Margin principle such as
Max Margin Markov Network (M3N), ...
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Max Margin Approaches

Learning parameters in MRFs Probabilistic Approaches

Probabilistic Approaches

Main types:
e Maximum Entropy (MaxEnt)
e Maximum a Posteriori (MAP)
e Maximum Likelihood (ML)
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Max Margin Approaches

Learning parameters in MRFs Probabilistic Approaches

Maximum Entropy

Maximum Entropy (ME) estimates w by maximising the entropy.
That is,

w* = argmax Z —Pw(x,y) InPu(x,y).

Duality between maximum likelihood, and maximum entropy,
subject to moment matching constraints on the expectations of
features.
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Max Margin Approaches
Probabilistic Approaches

Learning parameters in MRFs

Let likelihood function £(w) be the modelled probability or density for
the occurrence of a sample configuration (x1,¥1), ..., (Xm,¥,,) given the
probability density Py, parameterised by w. That is,

Cw) = Pu ((x1,91), - (%m,¥im))-

Maximum a Posteriori (MAP) estimates w by maximising £(w) times a
prior P(w). That is

w* = argmax L(w)P(w). (6)
Assuming {(x;,¥;)}1<i<m are I.1.D. samples from Py(x,y), (6) becomes

w* = argmax H Pw(xi,y;)P(w)

Wooi<i<m

—argmln Z —InPy(x;,y;) — In P(w).

1<i<m
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Max Margin Approaches

Learning parameters in MRFs Probabilistic Approaches

Maximum Likelihood

Maximum Likelihood (ML) is a special case of MAP when P(w) is
uniform which means

*=argmax [[ Pw(xiy;)

1<i<m
= argmin E —InPw(xj,y;)
Woo1<i<m

Alternatively, one can replace the joint distribution Py (x,y) by the
conditional distribution Py, (y | x) that gives a discriminative model
called Conditional Random Fields (CRFs)
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Max Margin Approaches

Learning parameters in MRFs Probabilistic Approaches

Conditional Random Fields (CRFs) - 1

Assume the conditional distribution over Y| X has a form of
exponential families, i.e.,

exp((w, $(x,y)))
Z(w|x)

: (7)

P(y[x;w) =
where

Z(w|x) = Zexp<w<bxy ), (8)

y'eY

o(xy) = [ o/ x): Yo @iy ¥V x)]

iev (ij)EE

and

w = [wy; wa].

More generally speaking, the global feature can be decomposed
into local features on cliques (fully connected subgraphs).
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Max Margin Approaches
Probabilistic Approaches

Learning parameters in MRFs

Denote (x1,...,Xm) as X, (¥Y1,---,¥m) as Y. The classical
approach is to maximise the conditional likelihood of Y on X,
incorporating a prior on the parameters. This is a Maximum a
Posteriori (MAP) estimator, which consists of maximising

P(w|X,Y) x P(w)P(Y | X; w).

From the i.i.d. assumption we have

m

P(Y [ X;w) = [T P(y; [xi:w),
i=1

and we impose a Gaussian prior on w

—[[w]l®

P(w) o exp (M) .
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Max Margin Approaches
Probabilistic Approaches

Learning parameters in MRFs

Maximising the posterior distribution can also be seen as
minimising the negative log-posterior, which becomes our risk
function R(w | X,Y)

R(w|X,Y)=—In(P(w)P(Y|X;w))+c

=070 _ Z ((®(xi,y;),w)) — In(Z(w | x;)) +c,

i=1

=L (xi,Y;,W)

where c is a constant and ¢, denotes the log loss i.e. negative
log-likelihood. Now learning is equivalent to

w* = argmin R(w | X,Y).
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Max Margin Approaches
Probabilistic Approaches

Learning parameters in MRFs

Above is a convex optimisation problem on w since In Z(w |x) is a
convex function of w. The solution can be obtained by gradient
descent since In Z(w | x) is also differentiable. We have

m

VwRW[X,Y) = =) (®(x,y;) — Vi In(Z(w|x;)).
i=1

It follows from direct computation that

VwIn Z(w | X) = IE:wa(y \ x;w)[q)(xv Y)]
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. . Max Margin Approaches
Learning parameters in MRFs Probabilistic Approaches

Since ®(x,y) are decomposed over nodes and edges, it is
straightforward to show that the expectation also decomposes into
expectations on nodes V and edges &

IEyNP(y | x;w) [@(x,y)] =

Z Eyhmp ()] xw) [®;(y7, x)]

iev

T Z ]Ey(f),yU)NP(y(i),y(j)|X;W)[q)u(y(i),y(j) x)],
(iHee

where the node and edge expectations can be computed given
P(y(’)| x;w) and P(y(’),y(1)| x; W), which can be computed exactly
by variable elimination or junction tree or approximately using e.g.

(loopy) belief propagation, or being circumvented through
sampling.
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Max Margin Approaches

Learning parameters in MRFs Probabilistic Approaches

That's all

Thanks!
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